PADDLE BALL

INTRODUCTION

Paddle Ball is a video game in which ball-like particles enter from one side of the screen
and a paddle with its position being controlled by an analog input has been used to
bounce the balls into the collector walls to score points. If the balls get past the paddle to
the left side of the screen the score gets decremented.

The goal was to optimize the code to generate as many balls as possible. This has been
partly achieved by using DMA channel to produce sound effects for the game. This DMA
channel was used to drive the SPI DAC in order to produce sound effects during points
scoring and at the end of the game. The balls in this video game have been modelled as
frictionless balls of equal mass. But a small drag component has been added to slow the
balls after a certain period of time.

DESIGN

Ball dynamics/Integration Algorithm -

The balls generated in the video game are assumed to frictionless and of equal mass.
The coordinate system for the TFT display has x increasing to the right and y increasing
downwards. When a collision happens between two balls the impact force acts in a
direction parallel to the line connecting the centers of the two colliding balls. The change
in velocity will also be parallel with respect to the connecting line between their centers.
Consequently, the component of velocity parallel to the line will have it sign reversed and
the component perpendicular to the line will remain unchanged.

The components of the integration algorithm are described below:

e Initially a structure has been created for the balls with different objects such as
the x_position,y_position,x_velocity,y velocity and hit_counter in fix16 format.

e Two ‘for’ loops have been used to make sure that every ball created in the game
would have a collision with all the others. To implement the ball dynamics easily
in the code all the vectors have been resolved separately into their X and Y
counterparts. Since this process is time consuming, the collision has been
performed between any two balls only if they were less than 2 radii apart.

If the distance between the centers of the balls is greater than 2 then the velocity
change is calculated according to the formula given below:

— - —>
- —?'i. (?‘..OV..)
2 ooy
A"i = =
v.. b
) i
<> >
where Fo P
i} N
— > =
Vv = V.—V.
)]

In the code the velocity_change has also been calculated separately for x and y
components. Subsequently this velocity _change had been added to the initial
velocities of the two balls considered(i.e i and j) to generate new velocities for the
balls after collision. The snippet of the code below shows the velocity update of
the balls i and j.

dot_product = multfix16(rij_x, vij_x) + multfix16(rij_y, Vi_y);
deltavi_x = -((multfix16(rij_x, dot_product)) >> 4);
deltavi_y = -((multfix16(rij_y, dot_product)) >> 4);

/Inew vi components
ball[i].x_vel = ball[i].x_vel + deltavi_x;
ball[il.y_vel = ball[il.y_vel + deltavi_y;

/Inew vj components
ball[j].x_vel = ball[j].x_vel - deltavi_x;
ball[jl.y_vel = ball[j].y_vel - deltavi_y;

It is not possible for the ball to ball collisions to be exact because of finite time
steps. One consequence of this is that balls tend to capture each other when
they collide and they will start orbiting one another. To avoid this, capture a
variable ‘hitcounter’ has been initialised to 4 and decremented to 0 giving a time
elapse of few frames before the ball collides with another ball or the paddle.

Setting up of the gaming Environment-

e A playing field consisting of a rectangle 320 wide x 240 high is setup on the LCD
screen with two internal barriers. The barriers have been placed at about 1/3 of
the x-width of the screen and about 1/4 of the screen length. Essentially each
barrier is of length 60.

80
60
240
50
60
320
Playing Field

e The balls are launched from the coordinates (309,120) which is the bottom-
center of the display. The x-component of the velocity of each ball is set to -2
pixels/frame and the y-component of the velocity has been randomized to take
values between -1.5 to 1.5 pixels/frame (multfix16((((rand() & Oxffff)<<1) -
int2fix16(1)), float2fix16(1.5))).

e Paddle draw: The paddle location is controlled by the player using the
screwdriver. The voltage varied (through a potentiometer) is converted into a
digital signal using the Analog to Digital Converter. The five setup parameters
(param_1, param_2, param_3, param_4 and param_5) required for the
configuration of the OpenADC10 have been initialized in the ‘main’. The position
at which the paddle has to be drawn is known by reading the result of channel 9
conversion from the idle buffer (adc_9 = ReadADC10(0)). The paddle is drawn
every time according to the position specified by the user at the given frame rate.

Thus at each frame time, the velocity and the position of all the balls on the
screen are updated and the paddle is redrawn according to its new position.

Setup of wall and paddle collisions: If the ball collides towards the right side of
the two barriers the x-component of the velocity of the ball is negated
(ball[i].x_vel = -ball[i].x_vel) which essentially means a head on collision.
Similarly, when the ball collides with the paddle the x-component of the velocity is
negated reversing the direction of the ball.

Score setup in the game: If the ball which are deflected into the left side of the
bottom and top walls the score gets incremented by 1 and the ball is removed
from the screen. If the ball gets past the paddle towards the left side of the
screen the score is decremented by 1 and the ball is removed from the screen.

Launching of the balls: Memory allocation for about 350 balls was set up for
this game. For every 250 msec the ball status is made valid as long the the ball is
within the maximum ball limit of 350 and the frame rate is greater than 17. Using
this logic the maximum number of balls possible are made to appear on the
screen within the given frame rate condition.

Clearing the balls: If the status of the ball is valid and the ball count is below the
maximum number of balls a counter (valid_time) starts counting from 1 to 100.
Once it finishes counting the ball status becomes invalid and it is cleared off the
screen by printing the ball black. This way the oldest balls on the screen will get
cleared at regular intervals of time.

Parameters displayed on the screen: A score, a frame rate, number of current
balls, and time have been displayed on the screen in that order. The frame rate
has been calculated by using frame_rate = (1000/(PT_GET _TIME() -
begin_time)) . The time to be displayed on the screen is calculated in seconds
using a timer thread. Inside this thread a variable sys time_seconds is
incremented for every 1000 msec using PT_YIELD TIME_msec(1000) . The
time limit for the game is 60 seconds after which the screen gets cleared and
‘GAME OVER' is printed on the screen.

DMA setup and creation of sound effects-

In this project a DMA channel has been utilized to create the sound effects for the video
game to generate the maximum number of balls on the screen. DMA uses memory
controllers separate from the CPU to accelerate data movement between memory
locations, or between peripherals and memory. The PIC32 has 4 DMA controllers which
can stream an aggregate of about 3.2 megabytes/sec without affecting CPU
performance, in many cases.

DMA setup in the main-

Three channels of DMA have been initialized to produce three different sound effects
(one during increment of score, one during decrement of score and one during game
over). All the three channels (0,1,2) have been initialized in default mode and the
destination address is set as the SPI2BUF which is also set up in the main. Additionally,
a separate DMA thread was created to yield a time of 500 msec.

RESULTS

0cs 0/C

coeao® O

€S RST VIN

%3
®
-
o
(]
-
]
=
S
3
§=
L
=
a
£
o~

by adafruit!
nost sl

8CK

teo' e

() 210x520

SScsssccssssww

Display of the game setup

1. Number of maximum balls generated: 168
2. Game time: 60 seconds

3. Synthesis rate was 44ksamples/second for one sound
4. Generated all the sounds using DMA and not ISR

CONCLUSION

TFT-LCD video game was successfully implemented and were able to generate around
168 balls and had 3 separate sounds for +1 score, -1 score and end game. The balls
generation was random and the generated balls were bouncing of each other and the
walls properly. TFT frame time was maintained at 17 frames/second allowing us as
much time as possible for computation and the TFT screen displayed 4 parameters -
score, frame rate, animated balls and time in seconds. All the sound effects were
generated using DMA and the synthesis rate was 44 ksamples/second for one sound.

APPENDIX CODE

/~k

* File: TFT test BRL4.c

* Author: Dev Sanghvi

* Adapted from:

* main.c by

* Author: Syed Tahmid Mahbub
* Target PIC: PIC32MX250F128B

*/

II/17777 77777777777 77777777777777777
// clock AND protoThreads configure!
// You MUST check this file!
#include "config.h"

// threading library

#include "pt cornell 1 2 1.h"

[0 777 77777777777 77777777777777777

// graphics libraries

#include "tft master.h"

#include "tft gfx.h"

// need for rand function

#include <stdlib.h>

I/ 7 7777777777 77777777777777777

#include <math.h>

/* Demo code for interfacing TFT (ILI9340 controller) to PIC32
* The library has been modified from a similar Adafruit library
*/

// Adafruit data:

/***

This is an example sketch for the Adafruit 2.2" SPI display.
This library works with the Adafruit 2.2" TFT Breakout w/SD card
-——-> http://www.adafruit.com/products/1480

Check out the links above for our tutorials and wiring diagrams
These displays use SPI to communicate, 4 or 5 pins are required to
interface (RST is optional)

Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing

products from Adafruit!

Written by Limor Fried/Ladyada for Adafruit Industries.

MIT license, all text above must be included in any redistribution
**/

http://www.adafruit.com/products/1480

#include "Mike digits 8khz packed.h"
#include "game end.h"

// string buffer

char buffer[60];

// === thread structures = ==
// thread control structs

// note that UART input and output are threads

static struct pt pt timer, pt anim, pt dma ;

// system 1 second interval tick
static int sys time seconds;

// === the fixed point macros === = ===
typedef signed int fixl6 ;

#define multfixl6(a,b) ((fix16) ((((signed long long) (a))* ((signed long
long) (b)))>>16)) //multiply two fixed 16:16

#define float2fixlé6(a) ((fixle6) ((a)*65536.0)) // 2716

#define fix2floatl6(a) ((float) (a)/65536.0)

#define fix2intl6 (a) ((int) ((a)>>16))

#define int2fix16 (a) ((fix16) ((a)<<1lo6))

#define divfixl6(a,b) ((fix1l6) ((((signed long long) (a)<<16)/(b))))

#define sqgrtfixle(a) (float2fixl6(sgrt(fix2floatlé(a))))
#define absfixl6(a) abs(a)

// === Timer Thread = = ======
// update a 1 second tick counter

static PT THREAD (protothread timer (struct pt *pt))

{

PT BEGIN(pt);
while (1) {
// yield time 1 second
PT YIELD TIME msec(1000) ;
sys_time seconds++ ;

// NEVER exit while
} // END WHILE (1)
PT END (pt);
} // timer thread

struct BALL {
fixlée x pos;
fixl6 y pos;
fixle x vel;

fixle y vel;

fix1l6 hit counter;
int ball status;
int valid time;

}i

// change both these variables for change in the number of balls

/ /=== = ——
//number of balls being animated
static int ball number = 350;

//memory allocation for balls
static struct BALL ball[350];

/=== = =

//ball radius
static fix16 ball radius

int2fix16(2);

//ball indices
static fixle i = 0;
static fixl6 j = 0;

// x coordinate of balls
static fixlo6 xi = 0;
static fixl6 xj = 0;

// y coordinate of balls
static fixl6 yi = 0;
static fixl6 yj = 0;

//x and y coordinates of the distance vector between any 2 balls
static fixl6 rij x = 0;
static fixl6 rij y = 0;
//x and y components of the relative velocity of ball i and ball j
static fixlé vij x = 0;

static fixl6 vij y = 0;

//the change in the velocity of ball i
static fixl6 deltavi x = 0;
static fixl6 deltavi y = 0;

// intermediate computation variable for dot product
static fix16 dot product = 0;

//15 fps
static int begin time = 0;

//velocity swap variables
static fix16 temp x = 0;
0;

static fixl6 temp y

//score tracker
static int score = 0;

//paddle location
static short paddle xpos

([
o O
~ o~

static short paddle ypos

//testing

static int print flag = 0;
static int k = 0;

static int a =0;

0;
static int disappear index = 0;

static int frame rate

//initial shooting position
static int launch timer flag = 0;
static int temp timer = O;

//live ball count tracker

static int animated ball = 0;
//game end condition

static int game end = 0;
static int clearing flag = 0;

//music elements

#define sine table size 256

volatile unsigned short sine table[sine table size];
static int s = 0;

#define DAC config chan A 0b0011000000000000

#define DAC config chan B 0b1011000000000000

static int plus song = 0;
static int minus song = 0;
static int game over song = 0;

#define dmaChn 0 0

#define dmaChn 1 1
#define dmaChn 2 2

// === Animation Thread =
// update a 1 second tick counter

//static fixl6 xc=int2fix16(10),
vyc=0;

static fixl6 g = float2fix16(0.1),

yc=int2fix16(150),

vxc=int2fix16 (

drag = float2fix16(0.00001);

static PT THREAD (protothread anim(struct pt *pt))

{
PT BEGIN (pt) ;

//adc test code
/ /===

static int adc 9;

//wall draw

tft drawLine (80, 0, 80, 60, ILIS340 WHITE);

//
tft drawLine (80, 180, 80, 240,
while (1) |
// yield time 1 second
begin time = PT GET TIME () ;

if (launch timer flag == 0)

{

ILIS%340 WHITE);

temp timer = PT GET TIME();

launch timer flag = 1;

//GAME OVER CONDITION
if (sys_time seconds == 60)

{
game end = 1;

if (game_end == 0)

2),

11

{
//adc test code

/=== .
// read the ADC AN11
// read the first buffer position

adc 9 = ReadADC10(0); // read the result of channel 9

conversion from the idle buffer

flipped

AcquireADC10(); // not needed if ADC AUTO SAMPLING ON below

//paddle location and printing

paddle ypos = ((adc_9 * 190) >> 10);
//start paddle from left side of screen
paddle ypos = 189 - paddle ypos;

//ball launcher.
if ((a < ball number) && (frame rate > 17))
{
if ((PT_GET TIME() - temp timer) > 250)
{
ball[a].ball status = 1;
animated ball = animated ball + 1;
a=a+1;
temp timer = PT GET TIME();

// check for each ball with every other ball
for (1 = 0; 1 < ball number; i++)
{

for (j =1 + 1; J < ball number; j++)

{

if ((ball[i].ball status == 1) && (ball[]j].ball status

// the sign of rij i.e. its direction may be

ball[i].x pos - ball[j].x pos;
ball[i].y pos - ball[j].y pos;

rij x

rij y

// are the balls close enough for collision ?
if ((absfixl6(rij x) <= int2fix16(4))

(absfix1l6(rij y) <= int2fix16(4)))

&&

20

if (absfixl6(rij x) <= int2fix16(2) &&
(absfixl6(rij y) <= int2£fix16(2)))
{
//prevent the overlap of balls. i.e. rij
components cannot be 0
temp x = ball[i].x vel;
temp y = ball[i].y vel;

ball[i].x vel = ball[j].x vel;
ball[i].y vel = ball[j].y vel;

ball[j].x vel = temp x;
ball[j].y vel

temp y;

ball[i].hit counter = int2fix16(4);

else 1f ((((multfixl6(rij x, rij x)) +
(multfixlé(rij y, rij y))) <= 1int2fix16(16)) && (ball[i].hit counter ==
int2fix16(0)))

// x component of relative velocity
between ball i and j

vij x = ball[i].x vel - ball[j].x vel;

// y component of relative velocity
between ball i and j
vij y = ballli].y vel - ball[j].y vel;

// delta vi computation. The below
implementation relies on ball radius being 2

dot product = multfixl6(rij x, vij x) +
multfixl6 (rij y, vij y);

//delta vi
deltavi x

- ((multfixl6(rij x,
dot product)) >> 4);

deltavi y - ((multfixlé(rij vy,

dot product)) >> 4);

//new vi components
ball[i].x vel = ball[i].x vel + deltavi x;

21

ball[i].y vel = ball[i].y vel + deltavi y;

//new vj components
ball[j].x vel = ball[j].x vel - deltavi x;
ball[j].y vel

ball[j].y vel - deltavi y;

// avoid balls from orbiting one another
ball[i].hit counter = int2fix16(4);

if (ball[i].hit counter > int2£fix16(0))
{
ball[i].hit counter = ball[i].hit counter -
int2fix16 (1) ;

for(i = 0; 1 < ball number; i++)
// 1 updates

if (ball[i].ball status == 1)
{
//clear the old ball location
tft drawPixel (fix2intl6 (ball[i].x pos),
fix2intl6 (ball[i] .y pos), ILI9340 BLACK);
tft drawPixel (fix2intl6 (ball[i].x pos) + 2,
fix2intl6 (ball[i] .y pos), ILI9340 BLACK);
tft drawPixel (fix2intl6 (ball[i].x pos) - 2,
fix2intl6 (ball[i] .y pos), ILI9340 BLACK);
tft drawPixel (fix2intl6 (ball[i].x pos),
fix2intl6 (ball[i] .y pos) + 2, ILI9340 BLACK);
tft drawPixel (fix2intl6 (ball[i].x pos),
fix2intl6 (ball[i] .y pos) - 2, ILI9340 BLACK);

//update ball i velocity
ballf[i].x vel = ball[i].x vel -

multfixl6 (ball[i].x vel, drag);
ball[i].y vel

ball[i].y vel -
multfixl6 (ball[i] .y vel, drag);

22

//update ball i location
ball[i].x pos = ball[i].x pos + ball[i].x vel;
ball[i].y pos = ball[i].y pos + ball[i].y vel;

//perimeter limiter
if (ball[i].x pos > int2fix16(315)) ball[i].x vel =
-ball[i].x vel;
if (ball[i].y pos < int2fix16(10) || ball[i].y pos >
int2fix16(230)) ball[i].y vel = -ball[i].y vel;

// top and bottom wall bouncing on the right side
if ((ball[i].x vel < int2fix16(0)) && (ball[i].x pos
<= int2fix16(85)) &&(ball[i].x pos >= int2fix16(80)) && (ball[i].y pos <=
int2fix16(60))) ball[i].x vel = -ball[i].x vel;
if ((ball[i].x vel < int2fix16(0)) && (ball[i].x pos
<= int2fix16(85)) &&(ball[i].x pos >= int2fix16(80)) && (ball[i].y pos >=
int2fix16(180))) ball[i].x vel = -ball[i].x vel;

//ball i is lost to the left perimeter
if (ballli].x pos < int2fix16(5))
{
score = score - 1;
animated ball = animated ball - 1;
ball[i].ball status = 0;
//TRIGGER DMA SOUND
DmaChnEnable (dmaChn_ 0) ;

//ball i top wall
if ((ball[i].x vel > int2fix16(0)) && (ball[i].x pos
>= int2fix16(76)) && (ball[i].x pos <= int2fix16(79)) && (ball[i].y pos <=
int2fix16(60)))

score = score + 1;

animated ball = animated ball - 1;
ball[i].ball status = 0;

//TRIGGER DMA SOUND

DmaChnEnable (dmaChn 1) ;

//ball i bottom wall
if ((ball[i].x_vel > int2fix16(0)) && (ball[i].x_pos
>= int2fix16(76)) && (ball[i].x pos <= int2fix16(80)) && (ball[i].y pos >=

23

int2fix16(180)))

score = score + 1;

animated ball = animated ball - 1;
ball[i].ball status = 0;

//TRIGGER DMA SOUND

DmaChnEnable (dmaChn 1) ;

//ball i paddle bounce
if ((ball[i].x pos < int2fix16(22)) && (ball[i].x pos
> int2fix16(18)) && (ball[i].y pos >= int2fix16 (paddle ypos)) &&
(ball[i].y pos <= int2fixl6(paddle ypos + 50)))

{
balll[i].x vel = -ball[i].x vel;

//remove ball i if it becomes invalid
if (ball[i].ball status == 1)
{
// draw ball i
tft drawPixel (fix2intl6 (ball[i].x pos),
fix2intl6(ball[i].y pos), ILI9340 RED);
tft drawPixel (fix2intl6(ball[i].x pos) + 2,
fix2intl6 (ball[i] .y pos), ILI9340 RED);
tft drawPixel (fix2intl6 (ball[i].x pos) - 2,
fix2intl6 (ball[i] .y pos), ILI9340 RED);
tft drawPixel (fix2intl6 (ball[i].x pos),
fix2intl6 (ball[i] .y pos) + 2, ILI9340 RED);
tft drawPixel (fix2intl6 (ball[i].x pos),
fix2intl6 (ball[i] .y pos) - 2, ILIS340 RED);
}

//oldest ball disappear
if ((disappear index < ball number) &&
(ball[disappear index].ball status == 1))
{
ball[disappear index].valid time +=1;
if (ball[disappear index].valid time > 100)
{

24

ball[disappear index].ball status = 0;

tft drawPixel (fix2intl6 (ball[disappear index].x pos),
fix2intlé6 (ball[disappear index].y pos), ILI9340 BLACK);
tft drawPixel (fix2intl6 (ball[disappear index].x pos) +
2, fix2intlé6(ball[disappear index].y pos), ILI9340 BLACK);
tft drawPixel (fix2intl6 (ball[disappear index].x pos) -
2, fix2intlé6(ball[disappear index].y pos), ILI9340 BLACK);
tft drawPixel (fix2intl6 (ball[disappear index].x pos),
fix2intl6 (ball[disappear index].y pos) + 2, ILI9340 BLACK);
tft drawPixel (fix2intl6 (ball[disappear index].x pos),
fix2intl6 (ball[disappear index].y pos) - 2, ILIS9340 BLACK);
disappear index +=1;

}
//PADDLE DRAW
tft drawLine (20, O, 20, 240, ILI9340 BLACK);
tft drawlLine (20, paddle ypos, 20, paddle ypos + 50,

ILI9340 WHITE) ;

frame rate = (1000/(PT _GET TIME() - begin time));
//display text on screen
tft fillRect (0, 0, 110, 10, ILIS340 BLACK);
tft setCursor (0, 0);
tft setTextColor (ILI9340 WHITE) ;
tft setTextSize(l);
sprintf (buffer, "%d
animated ball, sys time seconds);

o\

d %d %d", score, frame rate,

//sprintf (buffer, "sf $f $f
%f",fiXZfloatl6(ball[i].X_Vel),fiXZfloatl6(ball[i].y_vel),

fix2floatl6(ball[j].x vel), fix2floatl6(ball[j].y vel));
tft writeString(buffer);

PT YIELD TIME msec(67 - (PT_GET TIME() - begin time));
}else(
if (clearing flag == 0)

{
//display text on screen
tft fillRect (0, 0, 320, 240, ILI9340 BLACK);

clearing flag = 1;

25

}

tft setCursor (0, 0);

tft setTextColor (ILI9340 WHITE) ;
tft setTextSize(3);

sprintf (buffer, "GAME OVER !!");
tft writeString(buffer);
//TRIGGER DMA SOUND
DmaChnEnable (dmaChn 2) ;
PT_YIELD TIME msec (1000);

} // END WHILE (1)
PT END (pt) ;
} // animation thread

//dma thread
static PT_THREAD (protothread dma (struct pt *pt))
{

PT_BEGIN(pt);

PT YIELD TIME msec (500);

PT_END (pt) ;

// === Main = ===
void main (void) {

//SYSTEMConfigPerformance (PBCLK) ;

int 1 = 0;

ANSELA = 0; ANSELB = 0;

// === config threads ==========

// turns OFF UART support and debugger pin, unless defines are set
PT setup();

// === setup system wide interrupts ========

INTEnableSystemMultiVectoredInt () ;

//adc setup

26

// the BDC ////////////////77/7/7/7/7/7777/777/77/7777/
// configure and enable the ADC
CloseADC10(); // ensure the ADC 1is off Dbefore setting the

configuration

// define setup parameters for OpenADC10

// Turn module on | ouput in integer | trigger mode auto | enable
autosample
// ADC CLK AUTO -- Internal counter ends sampling and starts
conversion (Auto convert)
// ADC_AUTO SAMPLING ON -- Sampling begins immediately after last
conversion completes; SAMP bit is automatically set
// ADC AUTO SAMPLING OFF -- Sampling begins with AcquireADC1O0 () ;
#define PARAM1 ADC FORMAT INTG16 | ADC CLK AUTO |

ADC_AUTO SAMPLING OFF //

// define setup parameters for OpenADC10

// ADC ref external | disable offset test | disable scan mode | do 1
sample | use single buf | alternate mode off
#define PARAM2 ADC_VREF AVDD AVSS | ADC OFFSET CAL DISABLE |
ADC_SCAN OFF | ADC SAMPLES PER INT 1 | ADC_ALT BUF OFF | ADC ALT INPUT OFF
//
// Define setup parameters for OpenADC10
// use peripherial bus clock | set sample time | set ADC clock divider

// ADC CONV _CLK Tcy2 means divide CLK PB by 2 (max speed)

// ADC_SAMPLE TIME 5 seems to work with a source resistance < lkohm

#define PARAM3 ADC CONV _CLK PB | ADC_ SAMPLE TIME 5 | ADC CONV _CLK Tcy?2
//BDC_SAMPLE TIME 15| ADC_CONV_CLK Tcy?2

// define setup parameters for OpenADC10
// set AN1l and as analog inputs
#define PARAM4 ENABLE AN11l ANA // pin 24

// define setup parameters for OpenADC10
// do not assign channels to scan
#define PARAMS5 SKIP SCAN ALL

// use ground as neg ref for A | use AN11l for input A
// configure to sample ANI11
SetChanADC10 (ADC_CHO NEG SAMPLEA NVREF | ADC _CHO POS SAMPLEA AN11); //
configure to sample AN11
OpenADC10 (PARAM1, PARAM2, PARAM3, PARAM4, PARAM5); // configure ADC
using the parameters defined above

EnableADC10(); // Enable the ADC

27

/ /=== =
//SPI INITIALIZATION
/ /=== =

SpiChnOpen (SPI_CHANNEL2,
SPI_OPEN CKE REV | SPICON FRMEN |
PPSOutput (2, RPB5, SDO2);
PPSOutput (4, RPB10, SS2);

SPI_OPEN ON |
SPICON_ FRMPOL,

// DMA SETUP

SPI_OPEN MODE16 |

SPI OPEN MSTEN |
2);

[fmmmmmmm e -

int table counter;

for
table counter++)

{

(table counter = 0;

sine table[table counter] =
short)
}

//timer for -1 score

OpenTimer2 (T2 ON | T2 SOURCE_INT | T2 PS 1 1,
//timer for +1 score
OpenTimer3(T3 ON | T3 SOURCE INT | T3 PS 1 1,
//timer for end game
OpenTimer4 (T4 ON | T4 SOURCE_INT | T4 PS 1 1,

// Open the desired DMA channel.

table counter <

DAC config chan A |
((2047.0 * sin(table_counter*6.283/sine_table_size)

sine table size;

((unsigned

)+ 2048.0));

2500) ;

909);

3990) ;

// We enable the default mode for all 3 channels

DmaChnOpen (dmaChn_ 0, O,

DmaChnOpen (dmaChn_1, 1,
DmaChnOpen (dmaChn_2, 0,

DMA OPEN DEFAULT) ;

DMA OPEN DEFAULT) ;
DMA OPEN DEFAULT) ;

// set the transfer parameters:
destination size,
// Setting the last parameter

number of bytes per event

byte/interrupt

source & destination address,

to one makes

source &

the DMA output one

28

//chn 0. Set the music
DmaChnSetTxfer (dmaChn O, (void*) sine table, (void™)
sine table size * 2, 2, 2);

//chnl. Set the music
DmaChnSetTxfer (dmaChn 1, (void*) plus_sound, (void™)
sine table size * 2, 2, 2);

//chn2 . Set the music
DmaChnSetTxfer (dmaChn 2, (void*) game endl, (void*)
sine table size * 2, 2, 2);

&SPI2BUF,

&SPI2BUF,

&SPI2BUF,

// set the transfer event control: what event 1s to start the DMA

transfer

// In this case, timer2

// USING THE APPROPRIATE TIMER

//chn 0

DmaChnSetEventControl (dmaChn 0, DMA EV START IRQ(TIMER 2 IRQ));

//chn 1

DmaChnSetEventControl (dmaChn 1, DMA EV START IRQ(TIMER 3 IRQ));

//chn 2

DmaChnSetEventControl (dmaChn 2, DMA EV START IRQ(TIMER 4 IRQ));

// once we configured the DMA channel we can enable it
// now it's ready and waiting for an event to occur...

// init the threads
PT INIT(&pt timer);
PT INIT(&pt anim);
PT INIT (&pt dma);

// init the display

tft init hw();

tft begin();

tft fillScreen(ILI9340 BLACK) ;

29

//240x320 vertical display

tft setRotation(l); // Use tft setRotation(l)

// seed random color
srand (1) ;

for (k=0;k<ball number;k++)
{

ball[k].x pos = int2£fix16(309);

ball[k].y pos = int2£fix16(120);

balllk].x vel = float2fixl16(-2);

balllk].y vel = multfix16((((rand()
float2fix16(1.5));

.5
ball[k].hit counter = int2fix16(0);
ball[k].ball status = 0;
k]

balll .valid time = 0O;

// round-robin scheduler for threads
while (1) {

PT SCHEDULE (protothread timer (&pt timer));
PT SCHEDULE (protothread anim(&pt anim));
PT SCHEDULE (protothread dma (&pt dma)) ;

}

} // main

for 320x240

& Oxffff)<<l) - int2fix16(1

// === end

))

30

